Bilgi

Epilepsi, hesaplamalı sinirbilim tarafından açıklanıyor

Epilepsi, hesaplamalı sinirbilim tarafından açıklanıyor


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Birkaç yıl önce matematik yüksek lisansımda teorik sinirbilimde bir modül yaptım. Parametrelerde küçük bir ayarlamayla nöronlar için geliştirilen kursun matematiksel çerçevesinin, epileptik çıra sırasında gözlemlenenlere benzer ani trenler üreteceği gösterildi. Bu parametrik ince ayarlar, iyon kanalı/reseptör yapılarındaki mutasyonlara atfedilebilir. Bu, kursun en önemli noktalarından biriydi ve bir matematik/biyo disiplinler arası doktora programına başvurmaya geldiğimde, kişisel ifademde bu şekilde alıntı yaptım.

Şimdi röportaj hızla yaklaşıyor ve ortaya çıkacağından oldukça eminim, ama hayatım boyunca bir referans bulamıyorum. Dört yıl oyundan çıktıktan sonra hafızam en iyi ihtimalle bulanık.

Hatırladığım kadarıyla, bunun kısa vadeli plastisite ile bir ilgisi vardı. Normal nöronların amansız bir şekilde yüksek frekanslı ani trenlere tepkisi zamanla azalırken, patolojik nöronlarınki azalmaz. Ancak bu tamamen yanlış olabilir.

Yukarıda anlattığım modelin referansı nedir? Bir giriş/eğitim tedavisi tercih edilir, ancak orijinal makale iyidir.


Ne yazık ki, epileptik ani artış birçok nöral modelleme çalışmasında çok kolay bir şekilde meydana gelebilir ve bu nedenle epileptik aktivitenin bir nedeni olarak modelin belirli yönlerinin olasılığını ileri sürerken çok dikkatli olunmalıdır. Bahsettiğiniz gibi bir olasılık, uzun süreli ateşlemeyi önleyen kısa süreli depresyonun olmamasıdır. Ama yine, küresel uyarıcı bağlantıdaki basit bir artış da benzer dinamikler sergileyebilir.

Röportajınızda başarılar.


Mezun öğrenciler

Shenandoah bir BA aldı. 2018'de Vassar Koleji'nden Nörobilim ve Matematik alanında ve bir B.E. 2019'da Dartmouth Koleji'nden Biyomedikal Mühendisliği bölümünden mezun oldu. Halen Biyomühendislik bölümünde doktora öğrencisi ve Stanford'daki NeuroTech programına katılıyor.

Lucas lisans diplomasını aldı. Nörobilim ve Davranış Biyolojisi alanında Emory'den iyon kanalları üzerinde çalıştı ve histoloji için makine öğrenimi tabanlı araçlar geliştirdi. Lucas ayrıca, hareket halindeki hareket koordinasyonu ve iç durumları incelediği Princeton Sinirbilim Enstitüsü'nde ve nöronal hipereksitabilitede sodyum sızıntısının rolünü incelediği Pennsylvania Üniversitesi'nde eğitim aldı. Lucas, algoritmik özelliklerini anlamak için sinirsel algı devrelerini incelemek ve sorgulamakla ilgileniyor.

Tyler, 2014 yılında Brown Üniversitesi'nden Uygulamalı Matematik-Ekonomi alanında bir ScB aldı. Halen Stanford'daki Nörobilimler Yüksek Lisans Programında doktora öğrencisidir ve Nörobiyoloji alanında Prof. Shaul Druckmann tarafından ortak danışmanlık yapmaktadır. Tüm beyin görüntüleme ve nöral toplulukların uyarılması için deneysel tasarıma rehberlik eden teori ve makine öğrenimi araçları geliştirmekle ilgileniyor.

Kang Yong Loh lisans derecesini aldı. 2017 yılında Urbana-Champaign'deki Illinois Üniversitesi'nden Prof. Yi Lu'nun gözetiminde Kimya alanında yüksek lisans derecesi aldı ve canlı sistemlerde metal iyonlarını görüntülemek için yakın bir IR aracı geliştirdi. Daha sonra, Singapur Ulusal Üniversitesi'ndeki Prof. Xiaogang Liu'nun laboratuvarında, fototermal ve fotoakustik mekanizmalarda lantanitlerin rollerini araştırarak bir yıl ara verdi. Halen Stanford Üniversitesi, ChEM-H Enstitüsü ve Kimya Bölümü'nde doktora yüksek lisans öğrencisidir. Araştırma ilgi alanları, sinirbilimdeki soruları ele almak için yeni kimyasal ve protein araçları geliştirmeyi içerir. Kang Yong, Prof. Carolyn R. Bertozzi ile birlikte danışmanlık yapmaktadır.

YoungJu, lisans derecesini 2018 yılında KAIST'ten (Kore İleri Bilim ve Teknoloji Enstitüsü) Fizik ve Matematik alanında almıştır ve şu anda Stanford Üniversitesi'nde Uygulamalı Fizik Doktora öğrencisidir. KAIST'te Prof. YongKeun Park ve Won Do Heo, optik, genetik ve bilgi işlemin kesiştiği noktada disiplinler arası teknoloji geliştirme üzerine. Buna paralel olarak, biyotıp üzerinde gerçek dünyada bir etki yaratmak için ana lisans çalışması olan veriye dayalı holografik tanılamayı ticarileştiren başlangıç ​​​​Tomocube ile çalıştı. Şimdi Deisseroth laboratuvarında, tamamen optik elektrofizyoloji, makine öğrenimi ve dinamik sistem teorisi kullanarak nöral devrelerin veriye dayalı keşfi ve manipülasyonu ile ilgileniyor. Kendisi, Google Brain'de Dr. David Sussillo tarafından danışmanlık yapmaktadır.

Marija lisans derecesini aldı. 2011 yılında Kimya Mühendisliği ve çift M.S. 2013 yılında Belgrad Üniversitesi'nden Biyokimya ve Kimya Mühendisliği bölümünden mezun oldu. Yüksek Lisans araştırması sırasında, Dr. Sylvain Costes'in UC Berkeley'deki laboratuvarında DNA hasar tepkisi ve radyasyon sistemleri biyolojisi okudu. Stanford'a gelmeden önce, endüstride yaşam bilimleri ve translasyonel tıp alanında yeni nanoteknoloji platformları geliştirmek için araştırmalar yaparak dört yıl geçirdi. Şu anda, Marija Biyomühendislik Doktora Programındadır. Stanford'daki program.

Ethan, 2013 yılında Brown Üniversitesi'nden Uygulamalı Matematik-Biyoloji alanında bir ScB aldı ve şu anda Stanford'daki Nörobilimler Yüksek Lisans Programında doktora öğrencisidir. Daha önce, Brown Üniversitesi'nde Gilad Barnea ile anterograd transsinaptik etiketleme için genetik bir yöntem geliştirdi. Nöral devre dinamiklerini daha iyi manipüle etmek ve sorgulamak için genetik teknikler geliştirmekle ilgileniyor. Ethan, Profesör Liqun Luo tarafından birlikte tavsiye edilir.

Misha, Caltech'ten Biyomühendislik ve İşletme Ekonomisi ve Yönetimi alanında lisans derecesi almıştır ve şu anda Stanford'da Biyomühendislik Doktora programındadır. Optogenetik araç setini genişletmek için yeni opsinler geliştirmek ve davranışın altında yatan nöral devrelerin dinamiklerini araştırmak için optik araçlar uygulamakla ilgileniyor.

Sam, B.S.'yi aldı. 2012 yılında Yale Üniversitesi'nden Biyomedikal Mühendisliği bölümünden mezun olmuştur ve şu anda Stanford'daki Biyomühendislik programında doktora öğrencisidir.

Yoon, lisans derecesini 2013 yılında nörobiyoloji alanında ve M.S. Biyoloji alanında 2014 yılında Stanford Üniversitesi'nden. Master derecesi sırasında Thomas Sudhof'un laboratuvarında postsinaptik ve presinaptik zar proteinlerinin biyokimyası üzerinde çalıştı. Halen Biyomühendislik Ph.D. programı Stanford'dadır ve Dr. Brian Kobilka tarafından birlikte tavsiye edilmektedir. Farklı opsinlerin mekanizmalarını anlamak ve sinirbilim araştırmaları için yeni araçlar geliştirmek için çalışıyor.

Noah, Biyomedikal Mühendisliği ve Uygulamalı Matematik ve İstatistik alanlarında uzmanlaştığı Johns Hopkins Üniversitesi'nden Bilim Lisans derecesine sahiptir. Bugün, yeni nöral stimülasyon yöntemleri, larva zebra balıklarında nöral dinamiklerin tam beyin görüntülemesi ve hacimsel nöral görüntüleme veri kümelerinden kaynaklanan büyük veri sorunları için hesaplama araçları üzerinde çalışıyor.

Isaac bir B.S. Mühendislik Fiziğinde fotonik uzmanlığı ile Stanford, M.S. Görüntüleme ve optimizasyona odaklanan Elektrik Mühendisliği bölümünden, yine Stanford'dan ve şu anda Stanford'daki Elektrik Mühendisliği programında doktora öğrencisidir. EE'de Prof. Gordon Wetzstein tarafından danışmanlık yapmaktadır.


Sinaptik İletimin Modülasyonu

Bireysel nöronların aşırı uyarılabilirliği epileptogeneze önemli ölçüde katkıda bulunabilse de, epilepsi yaygın olarak nöronlar arasındaki anormal sinaptik etkileşim tarafından yönlendirilen bir “ağ hastalığı” olarak kabul edilir (McCormick ve Contreras, 2001). Sinaptik plastisite (özellikle kısa süreli sinaptik depresyon ve kolaylaştırma), sinaptik eşleşmenin işlevsel gücünü kritik bir şekilde şekillendirebilir, dolayısıyla sinaptik iletici salınımının belirli özelliklerinin bir ağı nöbetlere yatkın hale getirmesi mümkündür.

Astrositler, epileptogeneze sinaptik katkıları modüle etmek için ideal olarak konumlandırılmıştır. Deneysel veriler [Araque ve ark. (1999)], astrositik süreçlerin sıklıkla sinaptik bağlantılara bağlı olduğunu ve presinaptik buton, astrosit ve postsinaptik yoğunluktan oluşan “tripartite sinaps” kavramını ortaya çıkardığını göstermektedir. Sinaptik butonların uyarılması ve ardından nörotransmiterin salınması, yakındaki astrositlerde karmaşık kalsiyum tepkilerini ortaya çıkararak, bu glial hücrelerin sinaptik aktivite üzerinde �vesdrop” yapabildiğini gösterir [Haydon (2001)'de gözden geçirilmiştir]. Astrositik kalsiyumun yükselmesi, hücre dışı boşlukta (ECS) difüze olarak ve özel reseptörlere bağlanarak sinaptik iletimi modüle edebilen glutamat ve/veya ATP gibi moleküllerin düzenlenmiş salınımı ile sonuçlanır (Araque ve diğerleri, 1998) ve komşu nöronların uyarılabilirliği (Parpura ve Haydon, 2000 Reyes ve Parpura, 2008) (Şekil 1). Son zamanlarda, postsinaptik nöronal uyarılabilirliğin NMDA-R aracılı astrositik modülasyonunun, nöronal ağlarda epileptogenezi destekleyebildiği gösterilmiştir (Gomez-Gonzalo ve diğerleri, 2010). Bu, üçlü sinapsların sadece epilepside değil, aynı zamanda anormal sinaptik iletişime dayalı sinir sisteminin diğer hastalıklarında da rolü olduğunu düşündürür (Halassa ve ark., 2007).

Şekil 1. Astrositler, glutamaterjik sinapsta presinaptik iletimi ve postsinaptik uyarılabilirliği düzenler. Başarılı veziküler füzyonun ardından, salınan glutamatın bir kısmı dökülebilir ve komşu astrosit zarındaki metabotropik glutamat (mGlu) reseptörlerine ulaşabilir. Astrositik mGlu reseptörlerinin glutamat aktivasyonu, inositol trifosfatın (IP3) yükselmesi ve intra-astrositik serbest kalsiyum konsantrasyonunun artmasıyla sonuçlanan bir dizi biyokimyasal olayı aktive eder. Kalsiyum, presinaptik membran üzerindeki mGlu reseptörlerini ve/veya postsinaptik taraftaki NMDA reseptörlerini bağlayabilen astrositik glutamat (gliotransmisyon olarak adlandırılan bir süreç) salınımına neden olur ve böylece sinaptik transmiter salınımı olasılığını modüle eder (PSERBEST BIRAKMAK) ve/veya postsinaptik uyarılabilirlik. Sinaptik iletimin astrosit modülasyonu süreciyle ilgili daha nicel ayrıntılar için bkz. De Pitta ve ark. (2011).

Bildiğimiz kadarıyla, astrositlerin epileptogenezin sinaptik mekanizmalarına potansiyel katılımını araştıran ilk hesaplama modeli, nöronal aktivite üzerindeki temel astrositik “Ceavesdropping” kavramını içeriyordu ve nöronal aktiviteye bağlı astrositik kalsiyum yükselmelerinin tek etkisinin nöronal depolarizasyonu teşvik etmek için (Nadkarni ve Jung, 2003 Ek). Bu çalışma, astrositlerin pozitif geribildirim yoluyla epileptogenezi desteklediği sonucuna varmıştır. Astrositlerden salınan glutamatın, genellikle epileptik aktivite ile ilişkili paroksismal depolarizasyon kaymalarından sorumlu olabileceğini gösteren başka bir modelleme çalışmasında da benzer sonuçlara ulaşıldı (Silchenko ve Tass, 2008). Bununla birlikte, astrositlerden salınan gliotransmitter, sinaptik butonlardan glutamat salınımını yukarı veya aşağı regüle edebilir (Araque ve diğerleri, 1998 Zhang ve diğerleri, 2003) ve hesaplamalı modelleme çalışmaları, sinaptik iletimin bu tür negatif geri besleme modülasyonunun olabileceğini öne sürdü. sinir kültürlerinde spontan paroksismal aktivitenin düzenlenmesini hesaba katar (Volman ve diğerleri, 2007). Bu nedenle, üçlü sinaps bağlamında, astrositik sinyalleme, nöronal aktivite üzerinde olumlu veya olumsuz bir etkiye veya belki de her ikisinin bir kombinasyonuna sahip olabilir. Modüle edici etkilerin bu çeşitliliğinin arkasındaki mekanizmaları ortaya çıkarmak, astrositlerin nöbet bastırma veya teşvik koşullarını anlamada yardımcı olabilir.

Sinaptik nörotransmitter salımı kalsiyum odaklı bir süreçtir, dolayısıyla glial modülasyon yoluyla (örneğin presinaptik reseptör kanallarının astrositik aktivasyonu ile) presinaptik kalsiyum seviyelerindeki bir değişiklik sinaptik iletimi etkileyebilir. Üç parçalı bir sinapsın hesaplamalı modellemesi, astrositlerin presinaptik kalsiyum seviyelerini etkileyerek bilginin sinaptik iletimini optimize edebilme olasılığını destekledi (Nadkarni ve diğerleri, 2008). Yakın tarihli bir başka modelleme çalışmasında (De Pitta ve diğerleri, 2011), astrositler sinaptik iletimi ya bastırdı ya da kolaylaştırdı; bu, astrositlerin verici salma olasılığı üzerindeki nihai etkisinin, farklı mGlu-R'ler (sinaptik olarak yerleştirilmiş) arasındaki etkileşim tarafından belirlendiğini öne sürdü. ve temel sinaptik kesecik salma olasılığı. Bu yolları birleştiren model, sinaptik iletimin modülasyonunda astrositlerin rolüyle ilgili birkaç çelişkili deneysel gözlemi açıklamada başarılı oldu.


Soyut

Epilepsi, altta yatan derin beyin sistemlerinin yanı sıra korteksin birçok alanını içerebilen karmaşık bir dizi bozukluktur. Deja vu ve olfaktör halüsinasyon kadar çeşitli olabilen nöbetlerin sayısız tezahürü, bu nedenle araştırmacılara bölgesel işlevler ve ilişkiler hakkında fikir verebilir. Epilepsi ayrıca genetik ve patofizyolojik olarak karmaşıktır: karmaşık bir nedensellik etkileşiminde mikroskobik (iyon kanalları ve sinaptik proteinler ölçeğinde), makroskopik (beyin travması ve yeniden kablolama ölçeğinde) ve ara değişiklikleri içerir. Nedenselliği çözmek, nöbet yayılımını daha iyi anlamak ve tedavi etkinliğini anlamak ve nihayetinde tahmin etmek için bilgisayar modellemesinin gerekli olacağı uzun zamandır bilinmektedir. Son birkaç yılda epilepsiyi modellemede moleküler düzeyden sosyoekonomik düzeye kadar değişen düzeylerde önemli ilerleme kaydedilmiştir. Bu çabaları gözden geçiriyoruz ve bunları bozukluğu anlama ve tedavi etmeye yönelik tıbbi hedeflerle ilişkilendiriyoruz.


4.0 Sinir hücreleri, Nöronların Anatomisi ve Elektriksel Kişiliği

Beynin nasıl çalıştığını ve etrafımızdaki dünyayı nasıl algıladığımızı net bir şekilde anlamak için, beynin birincil kısmına, yani beyin kısmına bakalım. nöronlar. Bunlar insan beyninin hesaplama birimleridir.

Beyin, nöron adı verilen ayrı ayrı parçalara ayrılabilir. Mümkün olan birçok nöronal şekil vardır, örneğin görsel kortekste nöron piramidaldir ve beyincikte bunlara Purkinje hücreleri denir.


YÖNTEMLER: HESAPLAMA ADIMLARI

Bu çalışmada ham veri setimiz, her nöbet öncesi ve sonrası 60 s veri ile nöbetlerin EEG kayıtlarından oluşuyordu. Veriler, hasta başına en az iki nöbeti olan 42 hastadan toplanmıştır. Ağ analizi tekniklerini uyguladık ve iEEG dizisindeki her elektrotu ağdaki bir düğüm olarak kabul ettik. Algoritmamızın genel süreci Şekil 3'te vurgulanmıştır. Her zaman penceresi için çapraz güç spektrum matrisini, ardından karşılık gelen EVC'yi hesapladık ve ardından her elektrota EZ içinde olma olasılığını atayan bir Gauss ağırlıklandırma fonksiyonu eğittik. . EZ tarafından öngörülen elektrot seti için ısı haritasını hesapladıktan sonra, hem başarılı hem de başarısız cerrahi sonuçlar için bunları klinik elektrotlarla karşılaştırdık. Sonuçları her merkez için ayrı ayrı ve ayrıca tüm hastalar birlikte gruplandırılmış olarak gösteriyoruz. Sonuçlarımızı merkezde test edebilmemiz için Gauss ağırlıklandırma işlevini yalnızca bir merkezin hastalarını kullanarak eğittiğimizi unutmayın. Klinik prosedürler merkezdeki değişkenliğe karşı merkezden merkeze daha fazla değişebilir, bu nedenle bir merkez kullanarak eğitim almak ve ardından analizimizin farklı klinik prosedürler arasında geçerli olup olmadığını görmek için diğer tüm merkezlerde test etmek muhafazakar bir yaklaşımdır. Tüm Matlab (R2016b) ve Python (v 2.7) kodları Li (2018) adresinde çevrimiçi olarak herkese açıktır.

Nöbet başlangıcı lokalizasyonu için hesaplama adımları: algoritma, bitişiklik matrisi A(t) dizisini hesaplamak için ham ECoG'yi işler. Bu diziden, A(t), önde gelen özvektörlerin dizisini, v(t) bir ağ merkezilik ölçüsü olarak EVC'yi hesaplar. Algoritma daha sonra EVC'yi sıra merkeziliği r(t) dizisine dönüştürür. Bu diziden, r(t), algoritma, EZ'nin tahminlerini üreten bir ısı haritasını hesaplar. Sarı gölgelendirme, sıra merkeziliği olan zaman içinde gelişen ilk elektrotun EVC'sini gösterir. r1(T), grafikte gösterilmiştir.

Nöbet başlangıcı lokalizasyonu için hesaplama adımları: algoritma, bitişiklik matrisi A(t) dizisini hesaplamak için ham ECoG'yi işler. Bu diziden, A(t), önde gelen özvektörlerin dizisini, v(t) bir ağ merkezilik ölçüsü olarak EVC'yi hesaplar. Algoritma daha sonra EVC'yi sıra merkeziliği r(t) dizisine dönüştürür. Bu diziden, r(t), algoritma, EZ'nin tahminlerini üreten bir ısı haritasını hesaplar. Sarı gölgelendirme, sıra merkeziliği olan zaman içinde gelişen ilk elektrotun EVC'sini gösterir. r1(T), grafikte gösterilmiştir.

Verilerin Ön İşlenmesi

Tüm veriler, Matlab'da uygulanan 4. sıradaki butterworth çentik filtresi ile dijital filtrelemeye tabi tutuldu. filtfilt (59,5 ila 60,5 frekans aralığı). Genel olarak, EEG verilerinin gürültülü olduğu bilinmektedir ve referans şemaları, aşağı akış veri analizinde önemli bir rol oynayabilir. Analizden önce verilere ortak bir ortalama referans şeması uygulamaya karar verdik (Ludwig ve diğerleri, 2009). Burada, tüm kayıt elektrotlarından ortalama bir sinyal alıyoruz ve bunu elektrotlardan çıkarıyoruz. Bunun daha kararlı sonuçlar ürettiği ve birçok elektrotta ilişkili gürültüyü reddettiği gösterilmiştir (Gliske et al., 2016). Klinisyenler tarafından kayıtlarında artefakt olduğu konusunda bilgilendirilmeleri durumunda elektrotları sonraki analizlerin dışında bıraktığımızdan emin olduk.

Zaman İçinde Hesaplama ve Sıralama Düğüm Merkeziliği

Sıra Evrim Sinyallerini Normalleştirin

Normalleştirilmiş Sıra Sinyallerinden Hesaplama Özelliği Vektörü

Her normalleştirilmiş sinyal için, sinyalin eğri altındaki toplam alanın %10'una eşit olarak entegre olduğu konumları, yani sinyalin 0,1, 0,2, 0,3 ve sinyalin sonuna ulaşılana kadar bu şekilde devam eder. Bu, bir sinyal olarak hizmet eden her sinyal için 10 boyutlu bir vektör verir. özellik vektörü.

Özellik Vektörlerine Dayalı Elektrot Ağırlık Ataması

Her sinyal için öznitelik vektörlerini hesapladıktan sonra, öznitelikleri bir 2B ana bileşen (PC) uzayına yansıttık. Bu, her bir öznitelik vektörünün bir gözlem olduğu varsayılarak yapılmıştır, dolayısıyla analiz şu şekilde gerçekleştirilmiştir: uzay × zaman. PC analizi gerçekleştirdik ve tüm elektrotlar ve birinci ve ikinci PC'lere yansıtılan hastalar arasındaki özellikleri çizdik. Her elektrot (Şekil 4A'daki veri noktası), elektrotun klinik açıklamalı EZ bölgesinde olup olmadığına ve cerrahi rezeksiyonun başarılı mı yoksa başarısız mı olduğuna göre etiketlendi. Daha sonra 2B PC alanı üzerinde bir elektrota PC alanındaki konumlarına göre bir ağırlık atayacak bir ağırlıklandırma fonksiyonu oluşturduk.

(A) Birinci ve ikinci PCA bileşen dağılımı. PC uzayındaki noktalar: 1. Yeşil +: başarılı sonuçlarda rezeke edilmiş elektrotlar, 2. Kırmızı •: başarılı sonuçlarda rezeke edilmemiş elektrotlar, 3. Siyah +: başarısız sonuçlarda rezeke edilmiş elektrotlar ve 4. Siyah •: başarısız sonuçlarda rezeke edilmemiş elektrotlar. Dört ekin her birindeki grafikler, turuncu dikdörtgenlerle sınırlanan bölgelerdeki noktalar için ortalama normalleştirilmiş sıra merkezilik sinyalini gösterir. Grafiklerdeki gölgeli bölgeler, 1 standart sapma sınırını gösterir. Grafiklerdeki yeşil ve kırmızı çizgiler, sırasıyla bir nöbet döneminin başlangıcını ve sonunu gösterir. Sarı daire, birçok yeşil işaretin bulunduğu ilgi alanını vurgular. (B) Rengin EZ içindeki bir elektrotun ağırlığını temsil ettiği Gauss ağırlıklandırma fonksiyonuna bir örnek. Sol taraftaki dört grafik, sırasıyla her bir kadran için Gauss ağırlıklandırma fonksiyonunu temsil eder. Sağdaki grafik, son Gauss ağırlıklandırma fonksiyonunu veren dört Gauss fonksiyonunun toplamıdır.

(A) Birinci ve ikinci PCA bileşen dağılımı. PC uzayındaki noktalar: 1. Yeşil +: başarılı sonuçlarda rezeke edilmiş elektrotlar, 2. Kırmızı •: başarılı sonuçlarda rezeke edilmemiş elektrotlar, 3. Siyah +: başarısız sonuçlarda rezeke edilmiş elektrotlar ve 4. Siyah •: başarısız sonuçlarda rezeke edilmemiş elektrotlar. Dört ekin her birindeki grafikler, turuncu dikdörtgenlerle sınırlanan bölgelerdeki noktalar için ortalama normalleştirilmiş sıra merkezilik sinyalini gösterir. Grafiklerdeki gölgeli bölgeler, 1 standart sapma sınırını gösterir. Grafiklerdeki yeşil ve kırmızı çizgiler, sırasıyla bir nöbet döneminin başlangıcını ve sonunu gösterir. Sarı daire, birçok yeşil işaretin bulunduğu ilgi alanını vurgular. (B) Rengin EZ içindeki bir elektrotun ağırlığını temsil ettiği Gauss ağırlıklandırma fonksiyonuna bir örnek. Sol taraftaki dört grafik, sırasıyla her bir kadran için Gauss ağırlıklandırma fonksiyonunu temsil eder. Sağdaki grafik, son Gauss ağırlıklandırma fonksiyonunu veren dört Gauss fonksiyonunun toplamıdır.

Bu ağırlıklandırma fonksiyonunu oluşturmak için, onu eşit boyutlu kare bölümlere ayırdık (birinci ve ikinci ana bileşenler boyunca 100 × 100). Tüm veri noktalarında ortalama normalleştirilmiş sıra imzası, her bölüm için hesaplandı. Dört köşe bölümünün imzaları Şekil 4A'da gösterilmektedir. Bölümler arasında ortalama normalleştirilmiş sıra imzalarının şekilleri, bir şekilde sürekli bir şekilde değişir. PC alanının altından yukarıya doğru dikey olarak hareket eden sıra imzaları, içbükeyden dışbükey şekle geçiş yapar. Soldan sağa hareket edildiğinde, imza yatay olarak kayar: bölüm PC alanının altındaysa ileri (sağa), PC alanının üstündeyse geri (sola).

Hipotezimiz, Şekil 4A'nın sol alt köşesinde görüntülenen ark imzasının EZ'nin imzalarını temsil etmesidir çünkü bu, PC alanının başarılı sonuçları olan hastalardan (yeşil + puanlar) gelen en izole kanallara sahip olan bölgedir. Aslında, PC ızgarasının alt kısmı kemer imzasını gösterir. Bu nedenle, ağırlıklandırma fonksiyonu bu bölgelerde en yüksek olacak ve bu bölgelerden uzaklığın bir fonksiyonu olarak azalacak şekilde ayarlanmıştır. Denklem 5'te gösterildiği gibi dört iki değişkenli Gauss benzeri fonksiyonun (Denklem 5, Şekil 4B) toplamı olarak bir ağırlıklandırma işlevi tanımladık. 2B PC alanı, bir orijin tarafından tanımlanan dört çeyreğe bölünür. Bkz. Şekil 4B (solda) orijini (−100, −100).

Gauss Ağırlıklandırma Fonksiyonunun Eğitim Kökeni

w ben ( x , y ) = exp − α ben ( x − μ ) T ∑ ben − 1 ( x − μ )

αben - için üstel bozulma faktörü benkadran

sırasıyla konumu ve ortalama vektörü tanımlayın

∑ i - kovaryans matrisi benkadran

Hesaplama Derecesi Uyum ve İstatistiksel Analiz

Tüm hastalarda, elektrotlarda ve nöbet olaylarında bir DOA değerleri koleksiyonumuz var. Daha sonra iki dağılım elde ederiz: (a) başarılı tedavileri olan hastalarda implante edilen tüm elektrotlar için DOA dağılımı ve (b) tedavileri başarısız olan hastalarda implante edilen tüm elektrotlar için DOA dağılımı. Daha sonra, istatistiksel farklılıkları test etmek için Wilcoxon sıra toplamı testini kullanarak bu iki hasta grubu arasında DOA dağılımında anlamlı bir fark olup olmadığını test ederiz. Verilerin bir Öğrencinin normallik koşullarını karşılaması garanti edilmediğinden, bu parametrik olmayan test seçildi. T testi (Whitley & Ball, 2002). Ayrıca, tüm verileri birleştirdiğimiz ve başarılı ve başarısız sonuçlar için DOA dağılımlarının önemli ölçüde farklı olup olmadığını test ettiğimiz merkezler arası bir analiz de ekledik.

Bu analize ek olarak, başarı ve başarısızlığın aynı ölçekte karşılaştırılabilmesi için her merkezdeki anlaşmaların derecesini normalleştirmek için bir minimum-maksimum ölçeklendirme de ekliyoruz.

Yüksek Frekanslı Osilatör: qHFO Dedektörü

Algoritmamızı Gliske ve diğerlerinde sunulan qHFO algoritması ile karşılaştırdık. (2016), hassas bir HFO detektörü kullanır, ardından eserler tarafından üretilen HFO'ları redakte eder. Önceki çalışmalar, 1000 Hz'lik örnekleme oranlarının HFO'ları kaydedebildiğini, ancak Gliske ve ark. (2016). Bu nedenle, yalnızca örnekleme oranları ≥ 1.000 Hz olan ve mevcut interiktal verileri olan hastaları analiz ettik. Bu, toplam 13 ayrı kayıtlı veri seti ile NIH'den üç hasta ve JHU'dan iki hasta ile sonuçlandı. Burada analiz edilen veri kümeleri, klinik olarak açıklamalı EZ seti içinde ortalama 7.1 dakikalık bir kayda, analiz edilen toplam 83 elektrota ve 10 elektrota sahipti. Bu veriler üzerinde qHFO algoritmasının kullanılması birkaç küçük uyarlama gerektiriyordu.

Gliske et al. (2016). En az 2.000 Hz'lik örnekleme hızları gerektirdiğinden popDet artefakt reddetme yöntemi de kullanılamadı.


Sinirbilimde Hesaplamanın Rolü Nedir?

Wu Tsai Sinirbilim Enstitüsü'nden William Newsome, bu Direktörün Konuşmasında motivasyon, bilinç ve hesaplamalı sinirbilimcilerin büyüleyici zorluklarını tartışıyor.

Wu Tsai Sinirbilim Enstitüsü Direktörü William Newsome, HAI Denning Yardımcı Direktörü Fei-Fei Li ile yapay zeka ve sinirbilimin kesişimini araştırıyor.

Bu Direktörler Konuşmasında, HAI Denning Yardımcı Direktörü Fei-Fei Li'nin konuğu, Stanford Üniversitesi Tıp Fakültesi'nde Harman Ailesi Provostial Nörobiyoloji Profesörü William Newsome ve Vincent V.C. Wu Tsai Sinirbilim Enstitüsü'nün Woo Direktörü.

Burada Li ve Newsome, hesaplamanın sinirbilimdeki rolünü, hesaplamalı sinirbilimcilerin ele alabileceği zorlukları, beyni moleküler düzeyde anlamanın daha iyi sinir ağlarına yol açıp açamayacağını, AI'nın motivasyon spektrumunu ve hem doğal hem de doğal olarak söz konusu olduğunda bilincin karmaşık tanımını tartışıyor. zeka ve yapay.

Fei-Fei Li: Alandaki ve dünyadaki liderlerle AI'daki ilerlemeleri tartıştığımız HAI'nin Yönetici Konuşmalarına hoş geldiniz. Bugün benimle Profesör Bill Newsome. Bill'le bu konuşmayı yapacağım için çok ama çok heyecanlıyım. Kariyerimiz boyunca sohbet ettik ve Bill'in bursuna ve liderliğine büyük bir hayran oldum. Stanford Tıp Fakültesi'nde Nörobiyoloji Profesörü ve Stanford'daki Wu Tsai Nörobilimler Enstitüsü Direktörüdür. Bill, görsel algının ve basit karar verme biçimlerinin altında yatan sinirsel mekanizmaların anlaşılmasına önemli katkılarda bulunmuştur. Wu Tsai Enstitüsü başkanı olarak, beyni anlamamıza ve beyin bozuklukları için yeni tedaviler sunmamıza ve beyin sağlığını geliştirmemize yardımcı olan çok disiplinli araştırmalara odaklanmıştır.

Hoş geldin Bill. Bu konuşmayı çok merak ediyorum.

Bill Newsome: Burada olmak harika, Fei-Fei. Seni tekrar görmek güzel.

Li: Yapay zeka ve sinirbilimin kesişimini tanımlamak ve hakkında konuşmakla başlayalım. Alanınızda ve Wu Tsai Enstitüsü'nün çalışmasında hesaplamanın rolü olarak ne görüyorsunuz?

Newsome: Bu harika bir soru. Hesaplama bugün sinirbilim alanında son derece önemlidir. Bu soruyu cevaplamamın iki veya üç farklı yolu var, ama bunu senin üzerinde deneyeyim. Aslında hesaplamalı sinirbilim adı verilen bir alt alanımız var. Burada, Stanford'da bu alanda öğretim üyelerini işe aldık ve daha fazlasını işe almayı umuyoruz. İnsanlar bazen bana "Bu nedir?" diye soruyorlar. Ve bu şekilde koyacaktım. Sinirbilimde hesaplamanın gerçekten çok önemli olan yaklaşık üç farklı alanı vardır. İlk alan teorisyenlerdir: Beynin nasıl hesap yaptığı, beynin nasıl temsil ettiği, beynin nasıl eylem ürettiği hakkında genel ilkeleri teorileştirmeye ve çıkarmaya çalışan insanlardır.

Sinir ağı türleri olarak adlandıracağım ikinci alan: modelciler, derin evrişimsel ağların nasıl yapıldığını gerçekten anlayan ve tekrarlayan sinir ağlarının nasıl yapıldığını anlayan ve aslında sinir sisteminin çözdüğünü bildiğimiz basit oyuncak problemlerini modelleyen insanlar. Bu ağların bu sorunları nasıl çözdüğünü bulabilirsek, sinir sistemiyle ilgili yeni hipotezler hakkında fikir sahibi olabiliriz.

Ve sonra, hesaplamanın sinirbilimi gerçekten etkilemesinin üçüncü bir yolu, üst düzey veri analitiğidir. Bilimin birçok alanı gibi, artık beyinden daha büyük, daha zengin, daha karmaşık ve bazen çok daha belirsiz veri kümeleri alıyoruz, insanlık tarihinde elde edebileceğimizden çok daha fazla. Ve bu verilerle nasıl başa çıkılacağını, onlara nasıl davranılacağını, istatistiksel tuzaklardan nasıl kaçınılacağını gerçekten anlamak son derece önemlidir.

Bu hesaplama alanlarının üçünün de sinirbilim için gerçekten önemli olduğunu düşünüyorum. Farklı hesaplamalı sinirbilimcilerin bunların ikisinde, hatta bazen üçünde de başarılı olabileceğini düşünüyorum, ancak bugün sinirbilimde bunun gibi daha fazla kişiye ihtiyacımız var, daha az değil, çünkü zorluklar her zamankinden daha büyük.

Li: Bu tür bir hesaplamalı sinirbilimciye ihtiyaç duyduğunu düşündüğünüz en büyük zorluklar nelerdir?

Newsome: Pekala, size gerçek dünyadan bazı örnekler vermeme izin verin, belki size hesaplamanın gerçekten öncü bir rol oynadığı ve sinirbilime yönelik diğer yaklaşımların geride kaldığı bir örnek verebilirim. anlayış.

Bu yüzden size vereceğim bir alan, sinir sistemindeki entegrasyon adı verilen bir şeydir ve bu, kalkülüs alan herkese aşinadır. Kelimenin tam anlamıyla meydana gelen olayları sayıyor, kelimenin tam anlamıyla bazı zaman serilerini birleştiriyor ve sonunda ne kadar kaldığını söylüyor. Bu, karar verme de dahil olmak üzere birçok alanda sinir sisteminde gerçekten önemli bir sorun olarak ortaya çıkıyor, ancak çok basit. Sadece gözlerini hareket ettiriyor. Dolayısıyla, gözlerinizi bu noktadan bu noktaya hareket ettirdiğinizde, belirli nöronların beyindeki göz hareket alanı haritasında küçük bir patlama meydana getirdiğini ve patlamayı aldıklarında gözler oradan dışarı çıktığını biliyoruz. Şaşırtıcı olan şey, patlama gitmiş olsa bile, oraya vardıktan sonra orada kalıyorlar.

Ve teorileştirme, hesaplama teorisi entegrasyonla ilgilidir: Patlamanın nöral sinyallerini nasıl alabilir, bir hayvan gözleri tekrar hareket ettirmeye hazır olana kadar gözleri yerinde tutan bir değeri nasıl entegre edebilirsiniz? Fizyoloji hakkında bazı şeyler biliyorduk, hesaplama hakkında bazı şeyler biliyorduk, göz hareketlerini üreten beyin yapılarının bağlanabilirliği hakkında bazı şeyler biliyorduk. Bu durumda gerçekten eksik olduğumuz şey aslında anatomiydi.

Fiziksel ilkeleri somutlaştıran birkaç farklı hesaplama teorisinin bunu açıklayabileceği ortaya çıktı, ancak hangisinin beyinde gerçekten çalıştığını bilmek için hücrelerin gerçekten birbirine nasıl bağlandığının mikroanatomisine ihtiyacımız vardı. Bu, hesaplama teorisinin aslında yol gösterdiği ve bazı anatomik soruları motive ettiği bir örnek.

Ancak bunu dinleyenlerin çoğunun bugün yankı uyandıracağı bir örnek, görsel kategoride insan performansına yaklaşan derin evrişimsel ağların örneğidir.

Li: Bazı durumlarda aşıyor.

Newsome: Bazı durumlarda kesinlikle aşıyor. İnsanların işleri burada güvensiz çünkü bu ağlar görsel sınıflandırmada çok iyi hale geliyor. And this presents a really interesting problem, because you’re going to train a deep convolutional network that can do these things that seem almost magical, and we know almost everything there is to know about them, right? We know exactly the connections between the layers of the trained network, we know the signals that are passing, we can see the dynamics that exist, we can measure their performance. But there is still this deep angst, an intellectual angst, I’d say, among neuroscientists, and I think among some people in the AI community, that we still don’t understand how that’s happened.

What are the algorithmic principles by which you take an array of pixels and you turn it into faces, and distinguish among faces? And somehow, the deep physical and computational principles are not there yet. We don’t understand how these things are working. We understand the learning algorithm, and maybe that’s as deep as it’ll get at some point. But here’s a situation where I think computation needs to step in and teach us this, both for the artificial networks, and then for the real networks in our brains that recognize faces.

Li: Bill, I want to elaborate on that because neural networks, especially in visual recognition, are dear and near to my heart. On the one hand it’s phenomenal, right? We have these hundreds-layered, sometimes even thousand-layered convolutional neural network or recurrent network algorithms that are just very complex and can perform phenomenally well. When it comes to object recognition, some of these networks do surpass human capability. But in the meantime, if you look inside under the hood of these algorithms, while they’re humongous, they’re also extremely contrived compared to the brain.

I’ll just take one example of the neuron-to-neuron communication. The way that it’s realized in today’s neural network algorithm is a single scalar value, whereas the synaptic communication in the brain, as we learn more, and your colleagues will tell us, is far more complex. The neural signaling is not just one kind of neural signaling. I would love to hear more about this.

Also, on a little more system level, our brain is this organic organ that has evolved for at least the past 500 million years the mammalian brain is about 100 million years, and it has different parts, and different modules, and all that. And today’s neural network is nowhere near that kind of complexity and architecture.

So on one hand these humongous deep learning models are doing phenomenally well. On the other hand, they’re also very contrived compared to the brain. And I’m just very intrigued: from your perspective, as we learn more about these computational realities of the brain at the molecular level, at the synaptic level and the system level, do you see that we’re going to have different insights how to build these neural networks?

Newsome: I hope so, Fei-Fei. I think this is one of the deepest intellectual questions that computationally-minded neuroscientists argue about, and that’s to what extent are AI, and what I call NI — natural intelligence — going to converge at some point and really be useful dialogue partners? And to what extent are they simply going to be ships passing in the night, or they’re going to be parallel universes? Because there are these dramatic differences, as you point out.

One individual neuron ­— and our brain contains about 100 billion of them — is incredibly complex: incredibly complex shapes and incredibly complex biophysics, and different types of neurons in our brain have different types of physics. They’re profoundly non-linear, and they are hooked together in these synapses and ways that form circuits, and understanding and mapping those circuits is a big fundamental problem in neuroscience.

But something that should give all of us great pause is that there are these substances that are released locally in the brain called neuromodulator substances, and they actually diffuse to thousands of synapses in the space around them in the brain, and they can completely change that circuitry. This is beautiful, beautiful work by Eve Marder, who spent her career studying this neuromodulation. You take one group of neurons that are hooked up in a particular way, spritz on this neuromodulator, and suddenly they’re a different circuit, literally.

Li: Yeah, that’s fascinating. We don’t have that computational mechanism at all in our deep learning architecture.

Newsome: And another feature of brain architecture, that you and I have talked about offline together, is that brain architecture is almost universally recurrent. So area A of the brain has a projection to area B. You can kind of imagine that as one layer in the deep convolutional network to another layer. But inevitably, B projects back to A. And you can’t understand the activity of either area without understanding both, and the non-linear actions, the dynamical interactions that occur to produce a state that involves multiple layers simultaneously.

Many of us think today that understanding those dynamical states that are distributed across networks are going to be the secret to understanding a lot of brain computation.

I know that recurrence is starting to be built into some of these DCNs now. I don’t know where exactly that field sits, but that certainly is one of the ways you get dynamics.

Dynamics are, again, another universal feature of brain operation. They reflect the dynamics in the world around them, and the input but also the dynamics in the output. You’ve got to have dynamical output in order to drive muscles to move arms from one place to the other, right? So the brain is much richer, in terms of dynamics.

Another thing about the brain is it operates on impressively low power.

Li: I know, I was going to say the 20-watt problem. That’s dimmer than any lightbulbs we have. We hear about these impressive neural networks like GPT-3 or a neural architecture search or burst, an image that algorithms are all burning GPUs much more massively.

So how do you think about that?

Newsome: Well, I don’t think about it very much, except that our contrived devices are very, very inefficient and very wasteful.

We have a colleague at Stanford, Kwabena Boahen, who studies neuromorphic engineering, and trying to build analog circuits that compute in a much more brain-like way. And his analog circuits certainly are much, much more efficient in power usage than digital computers. But they haven’t achieved nearly the level of impressive performance and the kinds of sort of cognitive-like tasks that DCNs have achieved so far. So there’s a gap here that needs to be crossed.

Li: Yeah, I think this is a very interesting area of research. You mentioned the word cognitive, and I want to elaborate on that because I know we started talking about computational neuroscience, but cognitive neuroscience is part of neuroscience, and also in the field of visual where I sit.

First of all, half of my PhD was cognitive neuroscience. Second of all, in the past 30 years, I would give cognitive neuroscience a lot of credit in the field of vision to show to the AI world what are the problems to work on, especially the phenomenal work coming from the 70s and 80s in psychophysics by people like Irv Biederman, Molly Potter, and then getting to neurophysiology and cognitive neurophysiology, like Nancy Kanwisher, Simon Thorpe, showing us the phenomenal problem of object recognition, which eventually led to the blossom of computer vision object recognition research in the late 90s and the first 10 years of the 21st century.

So I want to hear from you, do you still see a role of cognitive neuroscience in, I guess, two sides of this: one is in today’s AI, which I think I have an opinion, but also AI coming back to help?

Newsome: I am not nearly as well versed or trained in cognitive neuroscience as you were. That was your graduate training. I think in a very simple-minded way about cognitive neuroscience, that may make our colleagues, may make you shudder, Fei-Fei, I’m not sure. I was trained as a sensory neuroscientist, trained in the visual system, the fundamentals of Hubel and Wiesel, and the receptive-field properties in the retina. And then the first processing in the brain, and then the cortex.

I was sort of getting into the brain, back in the 1970s and 1980s, thinking about signals coming from the periphery. We all called ourselves sensory neuroscientists, but there was another whole group of neuroscientists who were coming the opposite direction. They were having animals make movements: a right eye movement, like we’ve already talked about, or arm movements, and they’re looking at the neurons that provide input to those movements, and then they’re tracing their inputs back into the brain. And this was a motor science kind of effort.

And the sensory side and the motor side has enjoyed listening to each other talk, but they didn’t really talk about it very much. But they had to meet eventually. And I think one part of my career was playing a part in hooking those two things up. And we did it by studying simple forms of decision making. So giving animals sensory stimuli — that was my comfort zone — asking animals to make a decision about what they were seeing, and then make an operant movement. And if they got it correct, they got a reward.

Well, how did the sensory signals that are the result of a decision get hooked up to steering the movement? And that there, you’re squarely in cognition land. Some people refer to that as the watershed between sensory systems in the brain and motor systems in the brain. How do you render decisions?

You can think about sensory representations in the brain as kind of being like evidence, providing evidence about what’s out there in the world. But then you can think about these cognitive structures in the brain that have to actually make a decision, render a decision, and instruct movements. You can’t move your eyes to the right and to the left at the same time. Not going to happen. Sometimes you simply have to make decisions.

That’s how I kind of got into the cognitive neuroscience. And I think it’s one of the most interesting fields in all of neuroscience right now. I am hoping that AI and computational theory . well, I know that computational theory is making contributions because some of the integration problems, integration of evidence from noisy stimuli, those kinds of theories, those kinds of theoretical models have deeply informed my own work in decision making. So computation theory are certainly making contributions.

I sometimes wonder about the other way around: What is that we are learning from vision and neuroscience that could inform AI? And you and I have had conversations about that as well.

Li: Right. So I’ll give you an example of a group of us, Stanford neuroscience people like Dan Yamins, Nick Haber, they are the young generation of researchers who are actually taking developmental cognitive inspiration into the computational modeling of deep learning framework. They are building these learning agents that you can think of as learning babies as a metaphor, where the AI agent is trying to follow the rules of the cognitive development of early humans, in terms of curiosity, exploration and so on, and learn to build a model of the world and also improve its own dynamic model of how to interact with this world.

I think the arrow coming from cognitive developmental science actually is coming to AI to inspire new computational algorithm that transcends the more traditional, say, supervised deep learning models.

Newsome: One example where neuroscience has really led the way for artificial intelligence and for convolutional networks and artificial vision is the deep understanding of the early steps of vision in the mammalian brain, where set field structures filtering for spatial and temporal frequencies have particular locations in space the multiscale nature of that assembling those units in ways that extract oriented Gabor filters. That’s typical of the oriented filter, typical in the early stages of cortex processing in all mammals. And that now is baked into artificial visual.

That was the first thing. You don’t even bother to train a DCN on those steps. You just start with that front end, and that front end came honestly from neuroscience, from the classic work of Hubel and Wiesel, as you know. Coming through some principle psychophysics and statistical analysis input from people like David Field. I think if I had to point to one thing that neuroscience has given to AI it would be the front end of a lot of the vision.

Li: That’s a really big thing, so absolutely.

Newsome: Fei-Fei, let me just say that the other challenges there — and I think yeomans of the young generation who are working on visual would acknowledge, I think everyone acknowledges this, really — is that the artificial visual systems even though they can surpass human performance in some cases after they’re trained, the learning process is so different for humans from the artificial systems.

The artificial systems need tens of thousands of examples to get really, really good, and they have to be labeled examples, and they have to be labeled by human beings, or what is your gold standard. Whereas I have this little 5-year-old daughter at home, and by the time she was two or three, she had looked at a dozen examples of elephants, and she could recognize elephants anywhere. She could recognize line drawings, photographs, different angles, different sizes, different environments. And she can play Where’s Waldo on the common children’s magazine. And this is profoundly different.

So here’s an example where human cognitive neuroscience and the study of visual development in young humans and young animals, I think, presents a real challenge for artificial vision, artificial intelligence.

Li: Yeah, I actually wanted to emphasize on a point you just made because it truly, using your word, is profound because the way humans learn biologically, your NI, natural intelligence system learn is so different. I still remember 20 years ago, my first paper in AI was called “One-Shot Learning of Object Categories,” but until today, we do not have a truly effective framework to do one-shot learning the way that humans can do, or few-shot learning. And beyond just training example-based learning, there is unsupervised learning, there is the flexibility and the capability to generalize, and this is really quite a frontier of just the overall field of intelligence, whether it’s human intelligence, or artificial intelligence.

Newsome: Yeah, I think both AI and NI have to be appropriately humble right now about this. We’re almost equally ignorant about exactly how that happens.

Li: In a way, I almost think it has a social impact for those of us who are scientists. We need to share with the public about the limitations because the hype talk of AI today, of machine overlord and all that, is built upon some of the lack of knowledge of the limitations of the AI system, and also the phenomenal capability of human intelligence to stumble.

Bill, I want to switch topic a little bit because I think what you are doing at Wu Tsai goes beyond some of these more lower level modeling. One of the most important charter mission of Wu Tsai is neuro disorder and healthcare-related. Here, I’m going to say something that I hope that you can even disagree on: should we view AI and machine learning more like a tool for our researchers and doctors, clinicians to use this modern tool of data-driven methodology to help discover mechanism of diseases and treatments? Are there any examples of work at Wu Tsai like that? Just in general, how do you view AI through that lens of studying neuro disorders?

Newsome: Yeah, that’s a really good question. Is AI really more of a tool to enable us to get on with the business of doing serious biology, or do the actual processes and algorithms and architectural structure of AI lend understanding to their correspondence inside the brain?

And I think the answer is both. So let me just give you a little Bill’s-eye-view of neuro disease. There are some neurological diseases that have psychiatric comorbidities, where the biggest problem is simply that cells in the nervous system, somewhere in the nervous system, start dying, for reasons we don’t know yet. Parkinson’s disease is an example, where it’s a particular class of cells, the dopamine arginic cells that start dying, and we don’t know why. And Alzheimer’s disease, cells start dying all over the brain. There’s some areas that are particularly sensitive but by the time an Alzheimer’s patient shows up in the clinic complaining of symptoms, they’ve already lost probably billions of nerve cells certainly hundreds of millions of nerve cells by the time they become symptomatic.

And those diseases, I think, are going to be solved ultimately at a molecular and cellular level. Something is going wrong in the life of cells, and whether that’s in the metabolic regime, whether it’s in the cleanup regime, keeping the cell whole and safe and free of pollutants, whatever it is, the secrets to that are going to be in cell biology, and AI can certainly help us tremendously just by providing tools to assemble all the data that we’re acquiring at that genetic and molecular level inside of cells.

On the other hand, there are neural diseases that smack of the more systems type of pathology the problems are not lying in single cells probably. So you take some of the symptoms of Parkinson’s disease, for example, the tremor and things like this, they can actually be rectified by putting stimulating electrodes inside the brain and doing a process called deep brain stimulation. Any of the listeners who aren’t familiar with this can just Google “deep brain stimulation,” or go to YouTube, and you can see amazing videos of remission of symptoms with this. Not a cure for Parkinson’s but it’s a treatment for the symptoms.

And there are things like depression, which themselves don’t kill people it’s not like it’s a progressive degenerative disease. In depression, people come in, they come out. It’s a dynamic kind of process. It smacks of the state system inside the brain, and that state can go through multiple systems, some of which are depressed, some of which we would characterize as more normal or positive kind of outlook.

And that kind of dynamics of complex systems, I think, is going to be part and parcel of the AI computational neuroscience thrust: understanding how these densely interconnected networks, based on certain inputs, can assume different states, fluctuate between them. I think could give some insight into the actual disease itself.

So I think it depends on which disease you’re talking about, on whether AI is primarily going to be a tool or whether it might actually suggest some intellectual insights into the sources and explanations for some of them.

Li: That speaks of the broadness of machine learning AI’s utility in this big area. Where we sit at HAI, we see already a lot of budding collaborations between the school of Medicine, Wu Tsai Institute, and HAI researchers, where all of these topics are touched. I know there’s reinforcement learning algorithms in neurostimulation for trauma patients. Or there is computer vision algorithms to help neuro-recovery, in terms of physical rehabilitation. And also all the way down to the drug discovery, or those areas. So very excited to see this is also a budding area of collaboration between AI and neuroscience.

Newsome: I think that this is going to grow, that interface is going to grow. I think ultimately we’ll diagnose depression much better through rapid real-time analysis of language that people use, and adjectives that they use, than expensive interaction with physicians. I don’t think the algorithms are going to replace physicians, but they’ll be very useful.

Can I bug you about something I’m wondering about?

Newsome: In some of the first discussions that led up to the formation of AI that I was privileged to sit in upon, we raised a question of when you’re a biologist you think about a human or animal performing a task doing a discrimination task, or making a choice between this action that action. And the question that comes up is motivation. What is the organism motivated to do at the time?

And this gets very complicated. In all kinds of social situations with humans, we worry about what’s fair, and we may do things that are against our economic interest because we are striking out for fairness. There are these values, there are these motivations, there are these incentives. And I wonder: what is the motivation in an artificial agent? To the extent that I know anything about motivation in artificial agents, it’s minimizing some cost function. Is that all there is to understand about incentives and motivation?

Is that all these complex feelings that we have, are they just reduced to cost functions, or is there a whole world there that AI needs to discover that they haven’t even scratched the surface of yet?

Li: This is a beautiful question. When you talk about motivation, I was thinking: what kind of reward objective mathematical functions I can write? And I come up very simple ones, like in the game of Go, I maximize the area that my own color block occupy. Or in the self-driving car, I will have a bunch of quantifiable objectives, that is: stay in the lane, don’t hit an obstacle, go with the speed, and so on. So yes, the short answer is motivation is a loaded word for humans, but when it comes to today’s AI algorithm, they are reduced to mathematical reward functions, sometimes as simple as a number, or what we call scalar functions. Or a little more complex, a bunch of numbers, and so on. And that’s the extent.

This clearly creates an issue with communication with the public because on one hand, people are claiming incredible performances of vision language, especially those confusing language applications where you feel the agent actually is talking to you, but the under the hood it’s just an agent optimizing for similar pattern it has seen.

So we don’t have a deep answer to this at all. My question to flip this is: both as a neuroscientist, as well as more objective observer of AI, do you see this as a fundamentally insurmountable gap, hiatus, between artificial intelligence and natural intelligence that would potentially touch on philosophical issues like awareness, consciousness? Or do you think this is a continuum of computation? At some point when computation is more and more sophisticated, things like motivation, awareness, or even consciousness would emerge?

Newsome: Well let me answer that in a couple of ways. First, I don’t think that it’s a fundamental divide. I don’t think that there’s anything magical inside our brains associated with the molecules carbon and oxygen, hydrogen and nitrogen. I do this thought experiment sometimes with groups where I say, “I’ve got a 100 billion neurons in my brain, but imagine I could pull one of them out and replace it with a little silicone, or name your substance, neuron that mimicked all the actions of that natural neuron perfectly. It received its inputs, it gave its outputs to the downstream neurons, can even modulate those connections with some neuromodulator substance, it can sense some: would those still be Bill with this one artificial neuron inside my brain along with a 100 billion natural ones?” And I think the answer would be yes. I don’t think there’d be anything fundamentally different about my consciousness and about my feeling. And then you just say, “Well what if it’s two?”

Newsome: What if it’s three? And you get up to 100 billion, after a while, and my deep feeling is that if those functional interactions are well mimicked by some artificial substance, that we will have a conscious entity there. I think it may well be that entity needs to be hooked up to the outside world through a body because so much of our learning and our feeling comes through experience. So I think robotics is a big part of the answer here. I don’t like the idea of disembodied conscious brains inside a silicon computer somewhere. I’m deeply skeptical of that.

Li: It’s like the movie, Her.

Newsome: Yeah. I don’t think the divide’s fundamental, I don’t think it’s magic. But the only place I know that consciousness exists, and that these intense feelings take place, is in the brains of humans, certainly in a lot of other mammals, maybe all other animals, but probably in birds and others as well.

But I think that neuroscience is kind of suited now, and artificial intelligence as it’s constituted now, there may be a fundamental divide just because they start with different presumptions, different goals of the kind that we’ve discussed here for the last half hour.

Does that make any sense to you, or am I just babbling here?

Li: No, no, it’s making some sense to me but let me try to share my point of agreement and disagreement. My point of agreement is that, like you said, where we are, the deep learning algorithm and also our understanding of the brain, is still so rudimentary. And from the AI point of view, it’s just so far, the gap between what today’s AI or foreseeable AI can do to what this natural intelligence from computation to emotion to consciousness, it’s just so far I really don’t see that the current architecture and mathematical guiding principle can get us there. What I don’t have an answer is when you say 100% of your neurons are replaced.

Newsome: But perfectly mimicking the functional relationships of the originals.

Li: First of all, I don’t know what perfectly mimicking means in that because we’re in counterfactual scenario. Like, maybe we can perfectly mimic up to this point of your life where your neurons are replaced, but what about all the future? Is that really Bill? It’s almost a philosophical question, that I don’t know how to answer. But I think this consciousness question is at the core of some of neuroscience researchers’ pursuit, as well as a very intriguing question for AI as a field.

Newsome: So consciousness, I call it the C word, and mostly I don’t utter the C word. But it is maybe the single most real, as Descartes thought, and interesting feature of our internal mental lives, so it’s certainly worth thinking about, both from a neuroscience point of view and an artificial intelligence point of view.

A lot of the muddiness about that word comes because we use it to mean so many different things. We use it to mean a pathological state, somebody’s unconscious rather than conscious. We use it to mean a natural state called sleep, and people are asleep and not conscious. Or we use it to mean: I’m conscious of this TV screen in front of me and I’m not conscious of the shoes on my feet at this particular point in time. Or we can use it at a much higher level, that I am conscious of the fact that I’m going to exist, that I’m going to die, that I have a limited time on this planet and I need to find as much meaning from those years as possible.

And so you have to sort of hone in on what you’re really trying to understand with the word. I think the one that’s most common is simply what we’re conscious of at any moment, what we’re aware of-

Newsome: A phenomenal awareness, like the philosophers call it. Many of your listeners will be familiar with David Chalmers and his notion of the hard problem of consciousness and the easy problem of consciousness. If you’re not, it’s definitely worth getting familiar with them. Chalmers says that there’s some things that neuroscientists are going to solve. We’re going to solve the easy problems. We’re going to solve attention, we’re going solve memory, we’re going to solve visual perception, we’re going solve visual coordination: all these features of conscious beings we’re going to solve, because we can see in principle the outlines of an answer to them, even though we’re far from having any details.

But what he says is the hard problem is why should some biological machinery hooked together in a particular way, why should there be any internal feelings at all that go along with that, that we’re conscious of? Conscious of being happier, conscious of being sadder, conscious of seeing red, or conscious of seeing green. Why is there that phenomenal experience?

And one of the things I’ve learned as a neurobiologist is that I can ask questions up to a certain point in animals, like I can electrically stimulate different parts of the brain, and I can elicit very sophisticated kinds of responses and behavioral responses, and yet, I do not know what that animal is actually feeling at the moment. There’s this first-person experience of our beings, and presumably of other animals’ beings, that is very difficult to know how we would describe that in any kind of objective terms, any kind of math that you could-

Newsome: Qualia, exactly. And that’s the hard problem. I’ll tell you, most neuroscientists, the large majority of neuroscientists, would deny that there was a hard problem of consciousness. It’s almost an ideology, honestly, because neuroscientists believe in the supremacy of their field. It’s a very deep commitment, and that once we get a mature neuroscience 500 years from now, however long it takes, there will be nothing about the brain or the mind left to explain.

And people who take the hard problem of consciousness seriously say, “It may be that an intrinsically third-person science cannot account for what is intrinsically first-person experience.” That there just may be a category of mismatch. And so I give credibility to that, but I’m an unusual neuroscientist in giving credibility to that.

Li: Yeah, you’re a very open-minded neuroscientist. I remember as a physics student at Princeton some physicists said that humanity is incapable of understanding the universe to its deepest depth because we are part of it, and it’s hard to study within something, the totality of that thing.

But just to be a little more concrete on a consciousness note for AI, one of the narrower definitions of consciousness is awareness not even this deep awareness, but contextual awareness. And one of my favorite quotes of AI come from the 70s, that goes like this (and keep in mind, this is the 70s). It says: “The definition of today’s AI is the computer can make a perfect chess move without realizing the room is on fire.” Of course, we can change the word chess move to a different game, like Go or anything else, but today’s AI algorithm, not to mention the deeper level of awareness, does not even have that contextual awareness. And this is five decades later, so we have a long way to go.

As scientists, especially someone like you with long career in neuroscience and computational neuroscience, and someone like me who is trained both in AI and neuroscience, inevitably I think about the question: is there a higher science, or a unified framework to think about intelligence? We talk about the current gap between NI — natural intelligence — and AI. We talk about the potential continuum that we can close this gap. But maybe at the end of that is a unified science, or Newton’s laws, or the general relativity of intelligence. Do you foresee that? Do you have any conjecture of that?

Newsome: I don’t think I’m smart enough to see that far into the future, Fei-Fei. I think that’s a laudable thing.

I was a physics undergrad, so it may be physics but it was part of my formative experience, even though I never got terribly sophisticated. And I like unification, I like coherence, I like the idea that physical reality is one thing fundamentally, and that we ought to be able to understand it through successful approaches to physical reality.

I do have this question about consciousness out there that I don’t know if our third-person science will be able to deal with, but in terms of intelligence, of general intelligence, flexible intelligence, contextual sensitivity, I think we should be able to get there. I think Chalmers would say, “That’s part of the easy problem of brain function or consciousness.” And I think we should be able to get to some general principles.

I think we might not get to them until we take the AI systems and put them on the robots that actually have to make their way in this world in order to survive. Only then will the robot care whether the room is on fire.

Li: Yeah, actually I really want to accentuate your point because you said multiple times you believe in a physical body, and I totally agree with you. You evoked Descartes’ “I think therefore I am,” which removed the physical body but just looking at evolution as well as today’s working AI and robotics and machine learning, I also think that the embodiedness of agency is critical, at least in the development of human intelligence, and will become more and more relevant and critical in artificial intelligence. So I agree with you.

But I’m still hoping the Wu Tsai Institute or HAI, hopefully together, will host a new generation of scientists that one day will give us the universal law of intelligence and unify some of these questions in intelligence, don’t you think?

Newsome: Yeah, Fei-Fei, it’s interesting. I’m not quite that ambitious yet. In just thinking about fundamental principles of computation of the brain, and information processing, and information extraction, and organization, and decision making, and memory, and learning, I don’t even know that there are going to be a single set of principles for the brain. I think that different brain structures have very, very different architecture. The cortex is very different from the basal ganglia. The basal ganglia are very different from the spinal cord. The spinal cord is very different from the hippocampus. And all of those are very different from the cerebellum. And I think that the computational principles, even though they all work with action potentials, they all work with neurotransmitters, they’re all subject to neuromodulation, there are certain things like that, that are universal probably across the brain.

But the rules of computation and algorithms that are instantiated in those neurons of very different structures may simply be different. It may be that there’s going to be one theory and one set of principles for the cerebellum, and a different one for the cerebral cortex. So I don’t know that there’ll be any general unified theory of mammalian brain function. It may be a collection of allied theories. And then you’ve got to have theories about how those circuits interact with each other, or produce behavior.

But I think there’s so much headroom for progress, so much new data being acquired and I’m optimistic. I think this is a great time to be a neuroscientist. It’s obviously a great time to be an artificial intelligence person, and I hope that these two great human enterprises do converge in a meaningful sense at some point.

Li: I think that is such a great note to end on, and just to echo your call for action, especially to the students out there, that it’s a phenomenal time to be considering these two fields, and especially the intersection of the two fields. I think some great discoveries and innovation will come about because of this intertwined joint adventure between neuroscience and AI.

So, thank you so much, Bill. We’ve often said that you and I can sit here and just talk for hours and hours, and every time I talk to you, it’s just so inspiring and just so humbled that I’m your colleague, and working on this together.

And thank you to our audience for joining us. You can always go to the HAI website to visit us, or go to our YouTube channel to listen to other great discussions with leading AI and thought leaders around the world. Teşekkürler.

Stanford HAI's mission is to advance AI research, education, policy and practice to improve the human condition. Learn more.


Study identifies druggable brain gene network implicated in epilepsy

'Network-biology' reveals how multiple interconnected genes in the brain can be simultaneously targeted for antiepileptic treatment. Credit: Duke-NUS Medical School

A new study has identified a network of genes in the brain that, when disrupted, causes epilepsy the results also predicted that a known anti-epileptic drug works to restore the network's function. This discovery has not only offered a new target for developing anti-epileptic drugs, but the original 'network biology' approach developed by the team may provide a quicker and cheaper way to accelerate the discovery of novel drug candidates that are effective treatments for disease.

The study was published on 13 December 2016 in the journal Genom Biyolojisi and was led by Associate Professor Enrico Petretto from the Centre for Computational Biology at Duke-NUS Medical School (Duke-NUS) in Singapore and in collaboration with Imperial College London.

Epilepsy is a common and serious neurological disorder which afflicts many people, and is characterised with a tendency to have recurring, unprovoked seizures. While many anti-epileptic treatments have been discovered, a third of epileptic patients still suffer from seizures. As a result, the search for effective treatments and cures is still ongoing. Research to identify new anti-epileptic drugs has been largely unsuccessful because the current widely-employed process of targeting one-gene-at-the-time, to find suitable targets and develop new drugs, is very slow and expensive.

Assoc Prof Petretto's lab has developed a 'network-biology' approach to identify a network of genes in the brain that underlie risk of developing both common and rare epilepsies. The approach identifies entire pathways, networks of genes and processes of disease that can be studied. Most importantly the approach can be used to predict how to manipulate the disease-networks with drugs to return them to a healthy state.

Using brain samples of healthy subjects, Assoc Prof Petretto's team built gene networks that were expressed across the human brain. Then, a using large database of mutations and genes associated with epilepsy, they discovered a gene network associated with rare and common forms of epilepsy. This 'epileptic-network' contained 320 genes and is called M30. This network represents a previously unknown convergent mechanism regulating susceptibility to epilepsy broadly.

The analyses the team did in mouse models of epilepsy suggested that the down-regulation or disruption of M30 contributed to the manifestation of epilepsy. To confirm this, the team employed computational approaches, based on 'network-biology', and leveraged public data resources to predict the effect of drugs and small molecules on the network to restore the 'epileptic-network' to its healthy state. The effect of valproic acid, a commonly-used anti-epileptic drug, to restore M30 to health was confirmed during this process. Other new drugs were also identified, which may have been acting in combination with valproic acid.

The results of the study suggest that targeting the M30 'epileptic-network' with combination of drugs may be a viable strategy to treat epilepsy.

"Like a mechanic who can predict how to fix or rewire a broken or malfunctioning set of highly interconnected gears in a car, my group uses a 'network-biology' approach to identify interconnected genes in the brain and other organs that may be dysregulated in diseases. We then predict how these genes can be targeted for restoration of function to a normal healthy state," explained Assoc Prof Petretto.

"Our approach allowed us to identify a network associated with epilepsy and provide a compelling proof-of-principle by predicting a known anti-epileptic drug to target the network. We were able to do this in a matter of few months only using publicly available data, while a typical effort to identify anti-epileptic drugs would usually take years."

The next step for Assoc Prof Petretto is to exploit his novel 'network-biology' approach for the discovery of new drugs for specific forms of epilepsy and other untreatable neuropsychiatric disorders. This will allow his team to leverage their approach on a larger scale and identify new potentially effective drugs that can be tested in a clinical setting.


The future is bionic

The importance of “reverse-engineering” the brain in this way was touched upon in The Conversation in February.

Building a bionic brain. Mariusz Szczygiel

This was in response to an Australian Academy of Science think-tank report on Australian neuroscience research. The report discussed a program to “create a bionic brain.”

“Bionic” literally means the intersection of Biyoloji ve elektronik. To “create a bionic brain” in electronic circuits will certainly require electronic engineers.

Cochlear implants, for example, successfully combine electronics with brain science, and are known as “bionic ears”.

Research on electronic “medical bionics” for brain disorders ranging from vision loss, to epilepsy treatment, to Parkinson’s disease to Alzheimer’s disease is also underway.

But as well as such applications, I believe that by mimicking the brain’s circuits, engineers also can advance fundamental understanding of neuronal computation in the brain.

In turn, this enhanced understanding will ultimately lead to engineered systems that replicate and surpass the capabilities of human intelligence.


Videoyu izle: nöbet anı (Mayıs Ayı 2022).